50,192 research outputs found

    Breakdown of counterflow superfluidity in a disordered quantum Hall bilayer

    Get PDF
    We present a theory for the regime of coherent interlayer tunneling in a disordered quantum Hall bilayer at total filling factor one, allowing for the effect of static vortices. We find that the system consists of domains of polarized superfluid phase. Injected currents introduce phase slips between the polarized domains which are pinned by disorder. We present a model of saturated tunneling domains that predicts a critical current for the breakdown of coherent tunneling that is extensive in the system size. This theory is supported by numerical results from a disordered phase model in two dimensions. We also discuss how our picture might be used to interpret experiments in the counterflow geometry and in two-terminal measurements.Comment: 7 pages, 3 figure

    Non-equilibrium dynamics in quantum field theory at high density: the tsunami

    Get PDF
    The dynamics of a dense relativistic quantum fluid out of thermodynamic equilibrium is studied in the framework of the Phi^4 scalar field theory in the large N limit. The time evolution of a particle distribution in momentum space (the tsunami) is computed. The effective mass felt by the particles in such a high density medium equals the tree level mass plus the expectation value of the squared field. The case of negative tree level squared mass is particularly interesting. In such case dynamical symmetry restoration as well as dynamical symmetry breaking can happen. Furthermore, the symmetry may stay broken with vanishing asymptotic squared mass showing the presence of out of equilibrium Goldstone bosons. We study these phenomena and identify the set of initial conditions that lead to each case. We compute the equation of state which turns to depend on the initial state. Although the system does not thermalize, the equation of state for asymptotically broken symmetry is of radiation type. We compute the correlation functions at equal times. The two point correlator for late times is the sum of different terms. One stems from the initial particle distribution. Another term accounts for the out of equilibrium Goldstone bosons created by spinodal unstabilities when the symmetry is asymptotically broken.Both terms are of the order of the inverse of the coupling for distances where causal signals can connect the two points. The contribution of the out of equilibrium Goldstones exhibits scaling behaviour in a generalized sense.Comment: LaTex, 49 pages, 15 .ps figure

    Corrigendum to "Knot Floer homology detects fibred knots"

    Full text link
    We correct a mistake on the citation of JSJ theory in \cite{Ni}. Some arguments in \cite{Ni} are also slightly modified accordingly.Comment: 3 page

    PRODUCTION OF HIGH LEVELS OF TRANSGENC FACTOR IX WITHOUT GENE RESCUE, AND ITS THERAPEUTIC USES

    Get PDF
    A non-human transgenic mammalian animal, as described above, contains an exogenous double stranded DNA sequence stably integrated into the genome of the animal, which comprises cis-acting regulatory units operably linked to a DNA sequence encoding human FIX protein without the benefit of the presence of a complete milk gene sequence for gene rescue, and a signal sequence is active in directing newly expressed Factor IX into the milk of the animal at levels in an unactivated form that is suitable for Subsequent processing for therapeutic applications in treating Hemophilia B. The transgenic mammals are preferably pigs, cows, sheep, goats and rabbits. The applications include milk derivatives for oral delivery and oral tolerization in the treatment of Hemophilia B

    Diamagnetism and flux creep in bilayer exciton superfluids

    Full text link
    We discuss the diamagnetism induced in an isolated quantum Hall bilayer with total filling factor one by an in-plane magnetic field. This is a signature of counterflow superfluidity in these systems. We calculate magnetically induced currents in the presence of pinned vortices nucleated by charge disorder, and predict a history-dependent diamagnetism that could persist on laboratory timescales. For current samples we find that the maximum in-plane moment is small, but with stronger tunneling the moments would be measurable using torque magnetometry. Such experiments would allow the persistent currents of a counterflow superfluid to be observed in an electrically isolated bilayer.Comment: 8 pages, 2 figures. v2: updated to accepted version, extended presentatio

    Chaos in Time Dependent Variational Approximations to Quantum Dynamics

    Full text link
    Dynamical chaos has recently been shown to exist in the Gaussian approximation in quantum mechanics and in the self-consistent mean field approach to studying the dynamics of quantum fields. In this study, we first show that any variational approximation to the dynamics of a quantum system based on the Dirac action principle leads to a classical Hamiltonian dynamics for the variational parameters. Since this Hamiltonian is generically nonlinear and nonintegrable, the dynamics thus generated can be chaotic, in distinction to the exact quantum evolution. We then restrict attention to a system of two biquadratically coupled quantum oscillators and study two variational schemes, the leading order large N (four canonical variables) and Hartree (six canonical variables) approximations. The chaos seen in the approximate dynamics is an artifact of the approximations: this is demonstrated by the fact that its onset occurs on the same characteristic time scale as the breakdown of the approximations when compared to numerical solutions of the time-dependent Schrodinger equation.Comment: 10 pages (12 figures), RevTeX (plus macro), uses epsf, minor typos correcte

    Inertial sensor-based knee flexion/extension angle estimation

    Get PDF
    A new method for estimating knee joint flexion/extension angles from segment acceleration and angular velocity data is described. The approach uses a combination of Kalman filters and biomechanical constraints based on anatomical knowledge. In contrast to many recently published methods, the proposed approach does not make use of the earth’s magnetic field and hence is insensitive to the complex field distortions commonly found in modern buildings. The method was validated experimentally by calculating knee angle from measurements taken from two IMUs placed on adjacent body segments. In contrast to many previous studies which have validated their approach during relatively slow activities or over short durations, the performance of the algorithm was evaluated during both walking and running over 5 minute periods. Seven healthy subjects were tested at various speeds from 1 to 5 miles/hour. Errors were estimated by comparing the results against data obtained simultaneously from a 10 camera motion tracking system (Qualysis). The average measurement error ranged from 0.7 degrees for slow walking (1 mph) to 3.4 degrees for running (5mph). The joint constraint used in the IMU analysis was derived from the Qualysis data. Limitations of the method, its clinical application and its possible extension are discussed

    Resolvent estimates for high-contrast elliptic problems with periodic coefficients.

    Get PDF
    We study the asymptotic behaviour of the resolvents (Aε+I)−1 of elliptic second-order differential operators Aε in Rd with periodic rapidly oscillating coefficients, as the period ε goes to zero. The class of operators covered by our analysis includes both the “classical” case of uniformly elliptic families (where the ellipticity constant does not depend on ε ) and the “double-porosity” case of coefficients that take contrasting values of order one and of order ε2 in different parts of the period cell. We provide a construction for the leading order term of the “operator asymptotics” of (Aε+I)−1 in the sense of operator-norm convergence and prove order O(ε) remainder estimates

    Time evolution of the chiral phase transition during a spherical expansion

    Full text link
    We examine the non-equilibrium time evolution of the hadronic plasma produced in a relativistic heavy ion collision, assuming a spherical expansion into the vacuum. We study the O(4)O(4) linear sigma model to leading order in a large-NN expansion. Starting at a temperature above the phase transition, the system expands and cools, finally settling into the broken symmetry vacuum state. We consider the proper time evolution of the effective pion mass, the order parameter σ\langle \sigma \rangle, and the particle number distribution. We examine several different initial conditions and look for instabilities (exponentially growing long wavelength modes) which can lead to the formation of disoriented chiral condensates (DCCs). We find that instabilities exist for proper times which are less than 3 fm/c. We also show that an experimental signature of domain growth is an increase in the low momentum spectrum of outgoing pions when compared to an expansion in thermal equilibrium. In comparison to particle production during a longitudinal expansion, we find that in a spherical expansion the system reaches the ``out'' regime much faster and more particles get produced. However the size of the unstable region, which is related to the domain size of DCCs, is not enhanced.Comment: REVTex, 20 pages, 8 postscript figures embedded with eps
    corecore